T/DIPA 12-2022 柔性直流换流阀功率模块损耗测试方法

T/DIPA 12-2022

团体标准 中文(简体) 现行 页数:31页 | 格式:PDF

基本信息

标准号
T/DIPA 12-2022
标准类型
团体标准
标准状态
现行
中国标准分类号(CCS)
-
国际标准分类号(ICS)
发布日期
2022-11-23
实施日期
2023-01-01
发布单位/组织
-
归口单位
珠海市直流输电及电力电子技术产业促进会
适用范围
主要技术内容:本文件描述了柔性直流换流阀功率模块损耗测试方法,包括双脉冲法、电测法、量热法、平衡量热法,给出了以上方法的测试原理、测试环境、测试要求、测试系统、测试程序和损耗计算等。本文件适用于基于绝缘栅双极晶体管(IGBT)的模块化多电平换流器(MMC)柔性直流换流阀功率模块的损耗测试。基于其他类型功率器件的柔性直流换流阀功率模块参照执行

发布历史

研制信息

起草单位:
南方电网科学研究院有限责任公司、中国南方电网有限责任公司、西安西电电力系统有限公司、中国南方电网有限责任公司超高压输电公司、荣信汇科电气股份有限公司、许继集团有限公司、西安高压电器研究院股份有限公司、南京南瑞继保电气有限公司、特变电工新疆新能源股份有限公司、广东电网有限责任公司广州供电局、广东电网有限责任公司珠海供电局、贵州电网有限责任公司电力科学研究院、中国南方电网有限责任公司超高压输电公司昆明局
起草人:
熊岩、罗炜、许树楷、姬煜轲、周月宾、黄莹、周会高、陈荷、钟伟华、魏伟、周竞宇、余琼、韩坤、徐义良、杨柳、陈俊、侯婷、宋禹飞、王昕、李巍巍、欧阳有鹏、刘航、朱铭炼、班国邦、裴星宇、张磊、朱博、卢建业、文军、谢文杰、付晓峰、蔺广科、张长水、吴宏远、陈图腾、李浩、靳駪
出版信息:
页数:31页 | 字数:- | 开本: -

内容描述

ICS29.200

CCSK46

SocialOrganizationStandard

T/DIPA12-2022

Testmethodsforpowerlossesof

sub-moduleinvoltage-sourced-converter

(VSC)valve

柔性直流换流阀功率模块损耗测试方法

Issuedate:2022-11-23Implementationdate:2023-01-01

Nationaltechnicalstandardinnovationbase

(DCtransmissionandpowerelectronicstechnology)preparation

Issuedby

ZhuhaiDCtransmissionandPowerElectronicsIndustryPromotion

Association

T/DIPA12-2022

Contents

Foreword...............................................................................................................................................................IV

1Scope....................................................................................................................................................................1

2NormativeReferences.........................................................................................................................................1

3TermsandDefinitions.........................................................................................................................................1

4TestPrinciplesandApplicationScenarios..........................................................................................................3

4.1PrincipleofLossTestbyDouble-pulseMethod..........................................................................................3

4.2PrincipleofLossTestbyElectricalMeasurementMethod.........................................................................3

4.3PrincipleofLossTestbyCalorimetricMethod...........................................................................................3

4.4PrincipleofLossTestbyBalancedCalorimetricMethod...........................................................................3

4.5ApplicationScenariosandResultsofVariousLossTestMethods.............................................................4

5LossTestbyDouble-pulseMethod.....................................................................................................................4

5.1TestEnvironment..........................................................................................................................................4

5.2TestRequirements........................................................................................................................................4

5.3Double-pulseTestSystem............................................................................................................................4

5.4TestProcedure..............................................................................................................................................6

5.5LossCalculation...........................................................................................................................................6

6LossTestwithElectricalMeasurementMethod.................................................................................................9

6.1TestEnvironment..........................................................................................................................................9

6.2TestRequirements........................................................................................................................................9

6.3LossMeasurementSystemwithElectricalMeasurementMethod.........................................................10

6.4TestProcedure............................................................................................................................................10

6.5LossCalculation.........................................................................................................................................10

7LossTestwithCalorimetricMethod.................................................................................................................11

7.1TestEnvironment........................................................................................................................................11

7.2TestRequirements......................................................................................................................................11

7.3TestSystemwithCalorimetricMethod......................................................................................................11

7.4TestProcedure............................................................................................................................................12

7.5LossCalculation.........................................................................................................................................12

8BalancedCalorimetricLossTest.......................................................................................................................13

8.1TestEnvironment........................................................................................................................................13

8.2TestRequirement........................................................................................................................................13

8.3BalancedCalorimetricMethodTestSystem..............................................................................................14

8.4TestProcedure............................................................................................................................................15

I

T/DIPA12-2022

8.5LossCalculation.........................................................................................................................................15

AnnexA(Informative)Sub-modulesinVSCValves....................................................................................17

AnnexB(Informative)ApplicationScenariosandResultsofLossTestMethods.............................................20

AnnexC(Informative)ExampleofTestPlatformforElectricalMeasurementMethod....................................22

References.............................................................................................................................................................23

Figure1SchematicDiagramofBalancedCalorimeter.........................................................................................3

Table1InputConditionsofTestSub-module........................................................................................................4

Figure2SchematicDiagramofSwitchingCharacteristicsofIGBTinDouble-pulseTest..................................5

Figure3SwitchingWaveformDiagramofIGBTintheDouble-pulseTest..........................................................5

Figure4SwitchingCharacteristicsWaveformDiagramofIGBTandDiodeinDoublePulseTest.....................6

Table2InputConditionsofTestEnvironmentandWorkingConditions..............................................................9

Figure5TypicalSub-moduleMechanicalBack-to-backTestPlatform..............................................................10

Figure6SchematicDiagramofCalorimetricMethodTestSystemandMeasuringPoints................................12

Figure7LayoutModeofAirOutletTemperatureSensor...................................................................................14

Figure8SchematicDiagramofSingle-chamberClosed-loopCalorimetricMethodMeasuringSystem..........15

FigureA.1Half-bridgeSub-moduleCircuit.........................................................................................................17

FigureA.2Full-bridgeSub-moduleCircuit.........................................................................................................18

FigureA.3CompositionofElectricalComponentsinsidetheSub-module........................................................18

TableB.1ApplicationScenariosofDifferentTestMethods................................................................................20

TableB.2ResultsofLossTestbyDouble-PulseMethod....................................................................................21

TableB.3ResultsofLossTestbyElectricalMeasurementMethod...................................................................21

TableB.4ResultsofLossTestbyCalorimetricMethod......................................................................................21

FigureC.1SchematicDiagramofBack-to-backTestPlatformforValveSection..............................................22

II

T/DIPA12-2022

Foreword

ThisdocumentwasdraftedinaccordancewiththeprovisionsofGB/T1.1-2020Directivesfor

Standardization-Part1:RulesfortheStructureandDraftingofStandardizingDocuments.

Itshallbenotedthatsomecontentsinthisdocumentmayinvolvepatents.Theorganizationissuingthis

documentisnotresponsiblefortheidentificationofthepatents.

ThisdocumentwasproposedbyandunderthejurisdictionofthePreparatoryOfficeoftheNational

TechnicalStandardInnovationBase(DCTransmissionandPowerElectronicsTechnology)andthe

StandardizationManagementCenterofZhuhaiDCTransmissionandPowerElectronicsTechnologyIndustry

PromotionAssociation.

ThisdocumentwasdraftedbyElectricPowerResearchInstitute,CSG,ChinaSouthernPowerGridCo.,

Ltd.,Xi'anXDPowerSystemCo.,Ltd.,ExtraHighVoltagePowerTransmissionCompanyofChinaSouthern

PowerGridCo.,Ltd.,RongxinHuikeElectricCo.,Ltd.,XujiGroupCo.,Ltd.,Xi'anHighVoltageApparatus

ResearchInstituteCo.,Ltd.,NRElectricCo.,Ltd.,TBEAXinjiangSunoasisCo.,Ltd.,GuangzhouPower

SupplyBureauofGuangdongPowerGridCo.,Ltd.,ZhuhaiPowerSupplyBureauofGuangdongPowerGrid

Co.,Ltd.,ElectricPowerResearchInstituteofGuizhouPowerGridCo.,Ltd.,andKunmingBureauofExtra

HighVoltagePowerTransmissionCompanyofChinaSouthernPowerGridCo.,Ltd.

ThisdocumentwasmainlydraftedbyXiongYan,LuoWei,XuShukai,JiYuke,ZhouYuebin,Huang

Ying,ZhouHuigao,ChenHe,ZhongWeihua,WeiWei,ZhouJingyu,YuQiong,HanKun,XuYiliang,Yang

Liu,ChenJun,HouTing,SongYufei,WangXin,LiWeiwei,OuyangYoupeng,LiuHang,ZhuMinglian,Ban

Guobang,PeiXingyu,ZhangLei,ZhuBo,LuJianye,WenJun,XieWenjie,FuXiaofeng,LinGuangke,Zhang

Changshui,WuHongyuan,ChenTuteng,LiHao,andJinShen.

Thisisthefirstissueofthisdocument.

CommentsorsuggestionsontheimplementationofthisdocumentshallbesubmittedtoZhuhaiDC

TransmissionandPowerElectronicsTechnologyIndustryPromotionAssociation(Address:No.46,Leyuan

Road,XiangzhouDistrict,Zhuhai,Guangdong,519000).

III

T/DIPA12-2022

IV

T/DIPA12-2022

TestMethodsforPowerLossesofSub-modulein

Voltage-sourced-converter(VSC)Valve

1Scope

Thisdocumentdescribesthetestmethodsforpowerlossesofsub-moduleinVSCvalve,including

double-pulsemethod,electricalmeasurementmethod,calorimetricmethod,andbalancedcalorimetricmethod,

andspecifiesthetestprinciples,testenvironment,testrequirements,testsystem,testprocedures,andloss

calculationoftheabovemethods.

Thisdocumentisapplicabletothetestofpowerlossesofsub-moduleinVSCvalveofthemodular

multi-levelconverter(MMC)basedoninsulatedgatebipolartransistor(IGBT).Forthetestofpowerlossesof

sub-moduleinVSCvalvebasedonothertypesofpowerdevices,thisdocumentmaybereferredtofor

implementation.

2NormativeReferences

Thecontentsinthefollowingdocumentsconstitutetheessentialclausesofthisdocumentthrough

normativereferencesinthisdocument.Fordatedreferences,onlytheeditioncitedapplies.Forundated

references,thelatesteditionofthereferenceddocument(includinganyamendments)applies.

GB/T3048.4-2007TestMethodsforElectricalPropertiesofElectricCablesandWires-Part4:Testof

DCResistanceofConductors

GB/T29332-2012SemiconductorDevices-DiscreteDevices-Part9:Insulated-gateBipolarTransistors

(IGBT)

GB/T34118-2017TerminologyforVoltage-sourcedConverters(VSC)forHighVoltageDirectCurrent

(HVDC)Systems

GB/T34139-2017TechnicalSpecificationofConvertersforHigh-voltageDirectCurrent(HVDC)

TransmissionUsingVoltageSourcedConverters(VSC)

GB/T35702.1-2017PowerLossesinVoltageSourcedConverter(VSC)ValvesforHigh-voltageDirect

Current(HVDC)Systems

GB/T35702.2PowerLossesinVoltageSourcedConverter(VSC)ValvesforHigh-voltageDirectCurrent

(HVDC)Systems-Part2:ModularMultilevelConverters

GB/T37010-2018TechnicalSpecificationofConverterValvesforHigh-voltageDirectCurrentPower

TransmissionUsingVoltageSourcedConverters

3TermsandDefinitions

ThetermsanddefinitionsdefinedinGB/T34118-2018,GB/T34139,andGB/T37010andthefollowing

onesareapplicabletothisdocument.

3.1

Modularmulti-levelconverter(MMC)

EachVSCvalveisanMMCcomposedofseveralstandardmodularmulti-levelconverterassemblies

connectedinseries.

[Source:GB/T34118-2018,6.4]

3.2

Voltage-sourced-convertervalve

Modularmulti-levelconvertervalvecomposedofseveralsub-modulesconnectedinseries.

Note:Unlessotherwisespecified,the"convertervalve"inthisdocumentreferstotheVSCvalve.

1

T/DIPA12-2022

3.3

Sub-module

Thestandardassemblyoftheconvertervalve,inwhicheachswitchingunitconsistsofonlyone

IGBT-diodepair.

Note1:RefertoAnnexAforthemaintopologyandmaincomponentsofsub-modulesintheconvertervalves.

Note2:Thesub-modulesinthisdocumentarecomposedofIGBT,diode,DCcapacitor,controlpanel,andother

accessories.

[Source:GB/T34118-2018,7.13,modified]

3.4

IGBT-diodepair

CombinationofIGBTandfree-wheelingdiode(FWD)connectedinanti-parallelwithIGBT.

[Source:GB/T34118-2018,7.4]

3.5

Insulatedgatebipolartransistor(IGBT)

Athree-terminalsemiconductorswitchingdevice,includingonegateterminal(G)andtwoloadterminals,

namelyanemitter(E)andacollector(C).

[Source:GB/T34118-2018,7.2]

3.6

Free-wheelingdiode(FWD)

Apowersemiconductordevicewithdiodecharacteristics

Note:EachFWDhastwoterminals,includingananode(A)andacathode(K).ThecurrentdirectionintheFWDisopposite

tothatintheIGBTinanti-parallelwithit.TheFWDhasthecapacitytocopewiththesharpdropofcurrentcausedbyIGBT

switching.

[Source:GB/T34118-2018,7.3]

3.7

Turn-onenergy

Eon

TheenergydissipatedinsidetheIGBTduringthesinglepulsecollectorcurrentisturnedon.

[Source:GB/T29332-2012,3.4.6]

3.8

Turn-offenergy

Eoff

TheenergydissipatedinsidetheIGBTduringtheturn-offandtailtimeofasinglepulsecollectorcurrent.

[Source:GB/T29332-2012,3.4.7]

3.9

Diodereverserecoveryenergy

Erec

Theenergydissipatedbythediodeintheprocessofturn-off.

[Source:GB/T35702.1-2017,3.4.5]

3.10

Double-pulsemethod

Themethodofcalculatingthelossofthesub-modulewiththeswitchingwaveformandthesimulation

currentandvoltagewaveformofthesub-moduleobtainedbyapplyingtwocontinuouspulsestothepower

device.

3.11

Electricalmeasurementmethod

Themethodofcalculatingthelossofthesub-modulebymeasuringthevoltageandcurrent.

2

T/DIPA12-2022

3.12

Calorimetricmethod

Themethodofcalculatingthelossofthesub-modulebymeasuringthetemperatureriseofthecooling

mediumasvariouslossesgeneratedinsidethesub-modulewilleventuallybeconvertedintoheatandtheheat

willbetransferredtothecoolingmediumtoincreaseitstemperature.

3.13

Balancedcalorimetricmethod

Themethodofcalculatingtheequivalentlossofthesub-modulebymeasuringthepowerconsumptionof

theequivalentheatsourceaftertheequivalentheatsourcegeneratesheatintheconstructedbalanced

calorimetricsystemtogeneratethesametemperatureriseasthatgeneratedbytheheatdissipationofthe

sub-module.

4TestPrinciplesandApplicationScenarios

4.1PrincipleofLossTestbyDouble-pulseMethod

Thelossofthesub-moduleisanalyzedandcalculatedbycombiningtheswitchinglossmeasurement

resultsofthepowerdevicewiththesimulationwaveform.Theswitchinglossofpowerdevicesshallbe

measuredaccordingtotheprovisionsof6.3.11and6.3.12ofGB/T29332-2012.Theon-statelossofthe

sub-modulepowerdeviceiscalculatedbyusingthesimulationwaveformincombinationwiththeI/Vcurveof

thepowerdeviceturn-oninthedatamanual,soastoobtainthetotallossofthesub-module.

4.2PrincipleofLossTestbyElectricalMeasurementMethod

Thetestsystemconsistsofthetestedsub-module,thetestaccompanyingsub-module,andthereactor.

Theinputpowerandresistivelossofthesystemaremeasuredandthedifferencebetweenthemiscalculatedto

obtainthesumofthelossesofthesetwosub-modulesandthendivideitby2toobtaintheaveragelossofthe

sub-modules.

4.3PrincipleofLossTestbyCalorimetricMethod

Theheatconvertedbyvariouslossesgeneratedinsidethesub-moduleistransferredtothecooling

medium(usuallyliquid),andthelossofthesub-moduleiscalculatedbymeasuringthetemperatureriseofthe

coolingmedium.

4.4PrincipleofLossTestbyBalancedCalorimetricMethod

Byconstructingabalancedcalorimeter,aheaterisusedtosimulatetheheatgeneratedbythetestedobject,

soastoindirectlyandequivalentlyobtainthelossofthetestedobjectdissipatedtoair,asshowninFigure1.

Figure1SchematicDiagramofBalancedCalorimeter

Firstly,thetestedobjectisplacedinthebalancedcalorimeterandtheinletairtemperatureandwindspeed

aresettomakethesystemreachtheheatbalancestate,andthesystemstateisrecorded.Subsequently,the

testedobjectisshutdown,andthebalancedcalorimetercanberestoredtothepreviousheatbalance(equal

3

T/DIPA12-2022

temperaturerise)byaccuratelycontrollingtheheaterpower,sothatthelossofthetestedobjectdissipatedto

airisequaltotheheaterpower.

4.5ApplicationScenariosandResultsofVariousLossTestMethods

Theapplicationscenariosoffoursub-modulelosstestmethodsofdouble-pulsemethod,electrical

measurementmethod,calorimetricmethod,andbalancedcalorimetricmethodinthisdocumentareshownin

AnnexB.1,andtheresultsoflosstestbydifferentmethodsareshowninAnnexB.2.

5LossTestbyDouble-pulseMethod

5.1TestEnvironment

Thelosstestofthesub-modulerequirestheinput

定制服务

    相似标准推荐

    更多>