GB/T 44221-2024 光学系统波前像差的测定 夏克-哈特曼光电测量法

GB/T 44221-2024 Determination of wavefront aberration in optical systems—Electro-optical Shack-Hartmann method

国家标准 中文简体 现行 页数:24页 | 格式:PDF

基本信息

标准号
GB/T 44221-2024
相关服务
标准类型
国家标准
标准状态
现行
中国标准分类号(CCS)
国际标准分类号(ICS)
发布日期
2024-07-24
实施日期
2025-02-01
发布单位/组织
国家市场监督管理总局、国家标准化管理委员会
归口单位
全国光测量标准化技术委员会(SAC/TC 487)
适用范围
本文件描述了采用夏克-哈特曼法测量光学系统波前像差的原理及方法、测量条件、设备及装置、测量步骤以及测量数据处理。
本文件适用于采用夏克-哈特曼法测量光学系统波前像差的测量,也适用于光学零件面形偏差的测量。

发布历史

研制信息

起草单位:
中国科学院苏州生物医学工程技术研究所、中国科学院光电技术研究所、中国标准化研究院、中国科学院空天信息创新研究院、中国科学院长春光学精密机械与物理研究所、苏州慧利仪器有限责任公司、中国计量科学研究院、长春奥普光电技术股份有限公司、浙江舜宇光学有限公司、成都科奥达光电技术有限公司、苏州一光仪器有限公司、舟山市质量技术监督检测研究院
起草人:
史国华、邢利娜、何益、杨金生、蔡建奇、王璞、刘春雨、韩森、洪宝玉、冯长有、包明帝、叶虹、谢桂华、伍开军、沈晨雁、郝华东
出版信息:
页数:24页 | 字数:31 千字 | 开本: 大16开

内容描述

ICS17.180.99

CCSL50

中华人民共和国国家标准

GB/T44221—2024

光学系统波前像差的测定

夏克⁃哈特曼光电测量法

Determinationofwavefrontaberrationinopticalsystems—

Electro⁃opticalShack⁃Hartmannmethod

2024⁃07⁃24发布2025⁃02⁃01实施

国家市场监督管理总局

国家标准化管理委员会发布

GB/T44221—2024

目次

前言··························································································································Ⅲ

1范围·······················································································································1

2规范性引用文件········································································································1

3术语和定义··············································································································1

4测量原理及方法········································································································2

4.1测量原理···········································································································2

4.2光学系统波前像差测量方法···················································································2

4.3光学零件面形偏差的测量······················································································3

5测量条件·················································································································4

5.1测量环境···········································································································4

5.2样品·················································································································4

6设备及装置··············································································································4

6.1测量仪··············································································································4

6.2辅助镜头···········································································································5

7测量步骤·················································································································5

7.1测量前准备········································································································5

7.2波前重构方法的选择····························································································6

7.3光路对准···········································································································6

7.4测量与数据的判定·······························································································6

8测量数据处理···········································································································6

9测量报告·················································································································7

附录A(资料性)波前复原方法·······················································································8

附录B(资料性)Zernike多项式序列···············································································11

附录C(资料性)测量报告····························································································13

参考文献····················································································································14

GB/T44221—2024

前言

本文件按照GB/T1.1—2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规

定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由中国科学院提出。

本文件由全国光测量标准化技术委员会(SAC/TC487)归口。

本文件起草单位:中国科学院苏州生物医学工程技术研究所、中国科学院光电技术研究所、中国标

准化研究院、中国科学院空天信息创新研究院、中国科学院长春光学精密机械与物理研究所、苏州慧利

仪器有限责任公司、中国计量科学研究院、长春奥普光电技术股份有限公司、浙江舜宇光学有限公司、

成都科奥达光电技术有限公司、苏州一光仪器有限公司、舟山市质量技术监督检测研究院。

本文件主要起草人:史国华、邢利娜、何益、杨金生、蔡建奇、王璞、刘春雨、韩森、洪宝玉、冯长有、

包明帝、叶虹、谢桂华、伍开军、沈晨雁、郝华东。

GB/T44221—2024

光学系统波前像差的测定

夏克⁃哈特曼光电测量法

1范围

本文件描述了采用夏克⁃哈特曼法测量光学系统波前像差的原理及方法、测量条件、设备及装置、

测量步骤以及测量数据处理。

本文件适用于采用夏克⁃哈特曼法测量光学系统波前像差的测量,也适用于光学零件面形偏差的

测量。

2规范性引用文件

本文件没有规范性引用文件。

3术语和定义

下列术语和定义适用于本文件。

3.1

波前wavefront

光波传播时的等相位面。

[来源:GB/T13962—2009,2.28]

3.2

波前像差wavefrontaberration

Φ

波前与理想波前的偏差。

[来源:GB/T41869.2—2022,3.1,有修改]

3.3

面形偏差surfaceformdeviation

被测光学表面相对于参考光学表面的偏差。

[来源:GB/T2831—2009,3.1]

3.4

波前重构wavefrontreconstruction

通过子孔径的斜率计算得到入射波前的相位分布的过程。

3.5

口径diameter

仪器能够检测的光学零件或系统的通光孔径。

3.6

自准直法autocollimationmethod

使平行光管发出的平行光照射在试样上,再由试样反射回平行光管,根据焦点附近像的情况测定

试样的倾斜等的方法。可用于对准、调焦、测量微小位移和角度。

1

GB/T44221—2024

[来源:GB/T13962—2009,8.20]

3.7

波前像差峰⁃谷值peak⁃to⁃valleyvalueofwavefrontaberration

Φp⁃v

波前与理想波前的偏差的峰⁃谷值。

[来源:GB/T41869.2—2022,3.2,有修改]

3.8

波前像差均方根值root⁃mean⁃squareofwavefrontaberration

Φrms

波前与理想波前的偏差的均方根值。

4测量原理及方法

4.1测量原理

利用阵列聚焦器件(微透镜阵列或者微光学阵列光栅加会聚透镜)将光束孔径分割成若干子孔径,

并在探测器上聚焦形成多个光斑(实际像点)。通过光斑坐标计算得到光斑相对于焦点(理论像点)的

偏移量。通过计算光斑的相对偏移量获得入射波前对应到每个子孔径上的斜率。按照每一个子孔径

内波前的斜率信息,进行波前重构,得到全孔径上的波前相位分布。原理图见图1。

标引序号说明:

1——波面;

2——微透镜阵列;

3——CCD探测器。

图1夏克⁃哈特曼光电测量法原理图

4.2光学系统波前像差测量方法

4.2.1自准直法

采用自准直法进行测量时,平行光通过被测光学系统后被反射,反射光包含被测件的面形误差信

息,该反射光作为入射光,平行入射到夏克⁃哈特曼波前像差测量仪(简称测量仪)。光路两次经过待测

系统,得到的测量结果是光学系统波前像差的两倍。图2以望远系统为例,给出了测量仪采用自准直

法测量光学系统波前像差的示意图。测量前,应使用辅助平面镜标定测量仪的波前像差。

2

GB/T44221—2024

标引序号说明:

1——测量仪;

2——被测望远系统;

3——辅助平面镜。

图2自准直法测量光学系统波前像差示意图

4.2.2直接法

采用直接法进行测量时,测量仪输出的平行光通过被测光学系统后直接进入测量仪的夏克⁃哈特

曼传感器,测量结果即为光学系统的波前像差。图3以望远系统为例,给出了测量仪采用直接法测量

光学系统波前像差的示意图。

标引序号说明:

1——测量仪的光源与系统光路部分;

2——被测望远系统;

3——测量仪的夏克⁃哈特曼传感器。

图3直接法测量光学系统波前像差示意图

4.3光学零件面形偏差的测量

4.3.1球面光学零件

测量球面光学零件面形偏差采用自准直法。测量仪输出的平行光经辅助镜头汇聚到待测球面的

球心后被待测球面反射,再经辅助镜头平行入射到测量仪,得到待测球面的面形偏差,其结果是待测面

形偏差的两倍。测量凹球面光学零件面形偏差的示意图见图4。测量前,应使用标准球面镜标定带有

辅助镜头的测量仪。

标引序号说明:

1——测量仪;

2——辅助镜头;

3——被测光学零件。

图4测量凹球面光学零件面形偏差的示意图

3

GB/T44221—2024

4.3.2非圆形光学零件

按照4.3.1直接测量得到的是非圆形光学零件在实际测量区域内的结果。可采用区域重构算法,

给出全口径上的测量结果。

4.3.3非球面光学零件

非球面光学零件的测量需要辅助镜头,使测量仪出射的平行光,经待测元件和辅助镜头后实现平

行光

定制服务

    相似标准推荐

    更多>